
The Australian National University
Final Examination – November 2015

Comp2310 & Comp6310
Concurrent and Distributed Systems

	 Study period:	 15 minutes
	 Writing time:	 3 hours (after study period)
	 Total marks:	 100
	 Permitted materials:	 None

Questions are not equally weighted – sizes of answer boxes do not nec-
essarily relate to the number of marks given for this question.

All your answers must be written in the boxes provided in this booklet. You will be provided with scrap paper
for working, but only those answers written in this booklet will be marked. Do not remove this booklet from the
examination room. There is additional space at the end of the booklet in case the boxes provided are insufficient.
Label any answer you write at the end of the booklet with the number of the question it refers to.

Greater marks will be awarded for answers that are simple, short and concrete than for answers of a sketchy and
rambling nature. Marks will be lost for giving information that is irrelevant to a question.

Student number:

The following are for use by the examiners

Q1 mark Q2 mark Q3 mark Q4 mark Q5 mark Q6 mark

Total mark

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 2 of 22

1.  [16 marks] General Concurrency

(a)	 [3 marks] Give three examples of hardware components that support concurrency.

(b)	 [5 marks] What will be the output (or the possible outputs) of the following concur-
rent program? Give precise reasons for your answer. If you need to make assumptions
about the underlying operating system, runtime environment or hardware then state
those assumptions as well.

with Ada.Text_IO; use Ada.Text_IO;

procedure x_Value is

 x : Positive := 1;

 task One;
 task body One is

 begin
 x := x + x;
 end One;

 task Two;
 task body Two is

 begin
 x := x + x;
 end Two;

begin
 Put (Positive’Image (x));
end x_Value;

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 3 of 22

(c)	 [3 marks] How does a block of Dijktra’s guarded commands differ from a switch state-
ment as you find it in Java or C? Name at least two essential differences.

(d)	 [3 marks] How does a forall statement (as in Chapel) differ from a for statement as
you find it in Java or C? Be as precise as you can.

(e)	 [2 marks] If you define a boolean expression which is true when all your concurrent
processes are terminated could such an expression be regarded as a safety or a liveness
property? Do all concurrent programs have to fulfil such a termination condition? Give
precise reasons for both answers.

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 4 of 22

2.  [14 marks] Synchronization and Communication

(a)	 [5 marks] Can synchronous message passing systems emulate asynchronous message
passing? Can asynchronous message passing systems emulate synchronous message
passing? For both questions provide either a reason why this is not possible or a dia-
gram which is depicting how it could work. If it is only possible under certain assump-
tions then also state those assumptions.

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 5 of 22

(b)	 [3 marks] Define a general semaphore (as offered by an operating system) precisely.
Only the defining characteristics are asked for here – not the additional convenience
functions which might be offered as well by an operating system.

(c)	 [2 marks] Can you program a semaphore if your programming language does not pro-
vide one? If you need to make assumptions to answer this question then explain them
here as well.

(d)	 [4 marks] Which problematic issues with semaphores are resolved by monitors? Which
issues are not? Explain at least one resolved and one unresolved issue.

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 6 of 22

3.  [9 marks] Selective Concurrency

(a)	 [9 marks] Read the following Ada code carefully. The tasks and the calling code section
are syntactically correct and will compile without warnings.

 task Selector is
 entry Start;
 entry E1;
 entry E2;
 end Selector;

with three different versions for its body (all delay values are in seconds):

(i)  [9 marks] Add the outputs for all three versions to the time lines
below (assume that Start is called at time zero):

1 2 3 4 5 6 7 8 90

Version 1:

Version 2:

Version 3:

[seconds]

Version 1:

 task body Selector is

 begin
 accept Start;

 for i in 1 .. 2 loop

 select

 accept E1 do
 delay 2.0;
 Put (‘X’);
 end E1;

 or
 accept E2;
 delay 2.0;
 Put (‘Y’);

 or
 terminate;

 end select;

 delay 1.0;
 Put (‘Z’);

 end loop;

 end Selector;

Version 2:

 task body Selector is

 begin
 accept Start;

 for i in 1 .. 2 loop

 select

 accept E1;
 delay 2.0;
 Put (‘X’);

 or
 delay 2.0;
 accept E2;
 Put (‘Y’);
 exit;

 end select;

 delay 1.0;
 Put (‘Z’);

 end loop;

 end Selector;

Version 3:

 task body Selector is

 begin
 accept Start;

 for i in 1 .. 2 loop

 select

 accept E1 do
 delay 2.0;
 Put (‘X’);
 end E1;

 else
 accept E2;
 delay 2.0;
 Put (‘Y’);
 exit;

 end select;

 delay 1.0;
 Put (‘Z’);

 end loop;

 end Selector;

Called by this
code section:
Selector.Start;

Put (‘A’);
delay 1.0;

select
 Selector.E1;
 Put (‘B’);
else
 Put (‘C’);
end select;

delay 1.0;
Selector.E2;

delay 1.0;
Put (‘D’);

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 7 of 22

4.  [17 marks] Safety and Liveness

(a)	 [17 marks] Read the following Ada package carefully. The package is syntactically cor-
rect and will compile without warnings.

See explanation and questions after the program code.

generic
 type Element is private;
 Size : Positive;

package Stack_with_Semaphores_Generic is

 type Stack_Type is limited private;

 procedure Push (Item : Element; Stack : in out Stack_Type);
 procedure Pop (Item : out Element; Stack : in out Stack_Type);

 function Is_Empty (Stack : in out Stack_Type) return Boolean;
 function Is_Full (Stack : in out Stack_Type) return Boolean;

private

 protected type Semaphore (Initial : Natural := 0) is

 entry Wait;
 procedure Signal;

 private
 Value : Natural := Initial;

 end Semaphore;

 type List is array (1 .. Size) of Element;

 type Stack_Type is record
 Top : Natural := 0;
 Elements : List;
 Write_Lock : Semaphore (1);
 Read_Lock : Semaphore (1);
 Is_Empty : Semaphore (0);
 Is_Full : Semaphore (Size);
 Readers : Natural := 0;
 end record;

end Stack_with_Semaphores_Generic;

package body Stack_with_Semaphores_Generic is

 protected body Semaphore is

 entry Wait when Value > 0 is

 begin
 Value := Natural’Pred (Value);
 end Wait;

 procedure Signal is

 begin
 Value := Natural’Succ (Value);
 end Signal;
 end Semaphore;

(continued on next page)

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 8 of 22

 procedure Push (Item : Element; Stack : in out Stack_Type) is

 begin
 Stack.Write_Lock.Wait;
 Stack.Is_Full.Wait;

 Stack.Top := Positive’Succ (Stack.Top);
 Stack.Elements (Stack.Top) := Item;

 Stack.Is_Empty.Signal;
 Stack.Write_Lock.Signal;
 end Push;

 procedure Pop (Item : out Element; Stack : in out Stack_Type) is

 begin
 Stack.Write_Lock.Wait;
 Stack.Is_Empty.Wait;

 Item := Stack.Elements (Stack.Top);
 Stack.Top := Positive’Pred (Stack.Top);

 Stack.Is_Full.Signal;
 Stack.Write_Lock.Signal;
 end Pop;

 procedure Start_Read (Stack : in out Stack_Type) is

 begin
 Stack.Read_Lock.Wait;
 if Stack.Readers = 0 then
 Stack.Write_Lock.Wait;
 end if;
 Stack.Readers := Natural’Succ (Stack.Readers);
 Stack.Read_Lock.Signal;
 end Start_Read;

 procedure Stop_Read (Stack : in out Stack_Type) is

 begin
 Stack.Read_Lock.Wait;
 Stack.Readers := Natural’Pred (Stack.Readers);
 if Stack.Readers = 0 then
 Stack.Write_Lock.Signal;
 end if;
 Stack.Read_Lock.Signal;
 end Stop_Read;

 function Is_Empty (Stack : in out Stack_Type) return Boolean is

 begin
 Start_Read (Stack);
 Stop_Read (Stack);
 return Stack.Top < Stack.Elements’First;
 end Is_Empty;

 function Is_Full (Stack : in out Stack_Type) return Boolean is

 begin
 Start_Read (Stack);
 Stop_Read (Stack);
 return Stack.Top = Stack.Elements’Last;
 end Is_Full;

end Stack_with_Semaphores_Generic;

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 9 of 22

The package is intended to provide concurrency-safe access to a stack where the op-
erations Push and Pop are mutually exclusive to all other operations and the side-effect
free (with respect to the stack data) operations Is_Empty and Is_Full can be executed
by multiple tasks concurrently (unless Push or Pop are currently executing).

(i)  [3 marks] Explain the usage and the meaning of the initialization values of the indi-
vidual semaphores. What minimum and maximum values can each Semaphore reach?

(ii)  [3 marks] Can any data be accessed in an unsynchronized way? If so, point out
where this can happen and how you would prevent this.

(iii)  [3 marks] Are there any possibilities for deadlocks in the operations Push, Pop,
Is_Empty or Is_Full? If so, point out where this could happen and how you would pre-
vent this.

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 10 of 22

(iv)  [8 marks] Write a package with the same functionality, which is deadlock-free, syn-
chronizes all access to shared data, distinguishes read and write access and is less than
half the length of the given package. Safety and liveness properties of your version
should be obvious or easy to check.

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 11 of 22

5.  [19 marks] Data Parallelism

(a)	 [8 marks] Read this syntactically correct Chapel expression and then proceed to the
questions below:

|| reduce (Vector_1 != Vector_2)

where you should assume the declarations:

const Index = {1 .. 100000000};

var Vector_1, Vector_2 : [Index] real;

(i)  [1 mark] What is the type of this expression?

(ii)  [5 marks] Enumerate and explain the data parallel operations which are imple-
mented by this Chapel expression.

(iii)  [2 marks] How many concurrent entities (tasks, processes, threads or alike) are
created with this expression? Give reasons for your answer.

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 12 of 22

(b)	 [11 marks] Blocking operations are commonly kept at a minimum in high performance
applications.

(i)  [6 marks] Explain how a shared queue data structure can be implemented such that
some/all interferences between readers and writers of such a queue can be avoided.
Briefly outline a possible implementation.

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 13 of 22

(ii)  [5 marks] Can blocking/synchronization operations be completely avoided in some
concurrent programs? Give an example if you think this is the case and explain which
sorts of applications could be implemented without any blocks/synchronizations? If
you think that this is not the case then explain why blocking/synchronization is always
necessary.

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 14 of 22

6.  [25 marks] Distributed Systems

(a)	 [5 marks] What can you conclude about the events a and b (including whether they
happened on the same or on different processors) if the relations between the logical
times C a^ h and C b^ h associated with these events are:

(i)  [1 mark] C a C b!^ ^h h

(ii)  [1 mark] C a C b=^ ^h h

(iii)  [1 mark] C a C b>^ ^h h

(iv)  [2 marks] Is it true that if C a C b<^ ^h h then there always exists an event c, such
that: C a C C bc< <^ ^ ^h h h? Will your answer change if you measure time in calendar (or

“real”) time instead of logical time? Give precise reasons for your answers.

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 15 of 22

(b)	 [20 marks] Read the following Ada program carefully. The program is syntactically
correct and will compile without warnings. See questions on the following pages. This
first page contains only definitions for the sequential part of the program and you can
ignore it when analyzing the concurrent aspects.

with Ada.Containers.Vectors; use Ada.Containers;
with Ada.Text_IO; use Ada.Text_IO;

procedure Mini is

 No_Of_Stages : constant Positive := 8;
 No_Of_Elements : constant Positive := 2 ** No_Of_Stages;

 subtype Element is Natural;

 type Element_Array is array (Natural range <>) of Element;

 function Is_Sorted (D : Element_Array) return Boolean is
 (for all i in D’First .. D’Last - 1 => D (i) <= D (i + 1));

 function Is_Permutation (Field_A, Field_B : Element_Array) return Boolean is

 package Element_Vectors is
 new Vectors (Positive, Element); use Element_Vectors;
 package Sorting is new Generic_Sorting; use Sorting;

 Vector_A, Vector_B : Vector := Empty_Vector;

 begin
 for A of Field_A loop
 Append (Vector_A, A);
 end loop;
 for B of Field_B loop
 Append (Vector_B, B);
 end loop;
 Sort (Vector_A);
 Sort (Vector_B);
 return Vector_A = Vector_B;
 end Is_Permutation;

 function Merge (A, B : Element_Array) return Element_Array is

 (if A’Length = 0 then B
 elsif B’Length = 0 then A
 elsif A (A’First) < B (B’First)
 then A (A’First) & Merge (A (Natural’Succ (A’First) .. A’Last), B)
 else B (B’First) & Merge (A, B (Natural’Succ (B’First) .. B’Last)))

 with Pre => Is_Sorted (A) and then Is_Sorted (B),
 Post => Is_Sorted (Merge’Result) and then
 Is_Permutation (Merge’Result, A & B);

 subtype Stage_Range is Natural range 0 .. No_Of_Stages - 1;

(continued on next page)

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 16 of 22

 task type Stage is
 entry Hand_over_Id (Set_Id : Stage_Range);
 entry Feed (E : Element);
 end Stage;

 Stages : array (Stage_Range) of Stage;

 task body Stage is

 Id : Stage_Range := Stage_Range’Invalid_Value;

 begin
 accept Hand_over_Id (Set_Id : Stage_Range) do
 Id := Set_Id;
 end Hand_over_Id;

 declare
 type Channels is (Left, Right);

 Feeds : array (Channels) of Element_Array (1 .. 2 ** Natural (Id));

 begin
 loop
 for Ch in Channels loop
 for F of Feeds (Ch) loop
 select
 accept Feed (E : Element) do
 F := E;
 end Feed;
 or
 terminate;
 end select;
 end loop;
 end loop;

 declare
 Merged_Feed : constant Element_Array :=
 Merge (Feeds (Left), Feeds (Right));

 begin
 if Id < Stage_Range’Last then
 for M of Merged_Feed loop
 Stages (Id + 1).Feed (M);
 end loop;
 else
 Put_Line (“Pipeline output is “ &
 (if Is_Sorted (Merged_Feed) then “sorted” else “not sorted”));
 end if;
 end;
 end loop;
 end;

 end Stage;

begin
 for Id in Stage_Range loop
 Stages (Id).Hand_over_Id (Id);
 end loop;
 for E in reverse 1 .. No_Of_Elements loop
 Stages (Stages’First).Feed (E);
 end loop;
end Mini;

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 17 of 22

(i)  [2 marks] How many concurrent entities are implemented with this program? What
are they?

(ii)  [4 marks] What are the dependencies (shared data, synchronisation, etc.) between
the concurrent entities and how do they interact? Could these concurrent entities be
physically distributed? Give precise reasons.

(iii)  [2 marks] How many stages do you need to process n elements with this algorithm
(i.e. by feeding n elements into the first stage)?

(iv)  [2 marks] When will the last stage receive its first data and when does it start to
process (merge) data? Express this in global time, where the time unit is a single mes-
sage.

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 18 of 22

(v)  [4 marks] What is the time complexity for this algorithm (assuming that all stages
are running on physically parallel hardware)?

(vi)  [4 marks] What would be the total computational complexity (calculate this by
adding up the computational complexities for all nodes)?

(vii)  [2 marks] Will this program terminate? Give precise reasons.

continuation of answer to question part

continuation of answer to question part

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 19 of 22

continuation of answer to question part

continuation of answer to question part

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 20 of 22

continuation of answer to question part

continuation of answer to question part

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 21 of 22

continuation of answer to question part

continuation of answer to question part

Student number:..

Comp2310 & Comp6310	 Final Exam 2015	 Page 22 of 22

